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ABSTRACT

X In this research, analog active circuits are analyzed and designed using periodic
sampling techniques. Switched capacitor networks are the basis of these techniques.
The use of switched capacitor network allows active filters to be implemented in [C
form. As an application, a general purpose digitally controlled analog sampled data
filter is presented. The results of this programmable filter are compared with the
computer simulations for theoretical and practical verifications. The final goal of this
research is to demonstrate a number of practical conclusions about switched capacitor
networks.
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I. INTRODUCTION

A. WHY SWITCHED CAPACITORS?

Modern active filter design is based mainlv on RC filters. Practical RC filter
realizations require in most cases large-valued capacitors, and high precision resistors
and capacitors components to achieve accurate time constant. These two features
created a major obstacle for IC implementation of RC filters.

The MOS integrated-circuit technology had found wide usage in industry because
of its superior logic density, as compared to that achievable with bipolar technologies.
A unique property which is held by the MOS integrated-circuits is the capability to
store charge on a node for a short period of time, order of milliseconds, and to sense
this stored charge continuously and nondestructively. This property was first used in
dvnamic random-access memories and dynamic logic. In the last few years the analog
signal processing development gained a lot of momentum using the property mentioned
above.

As it will be explained in the next section of this chapter, the realization of the
RC time constant can be well controlled in MOS technologv by determining clock
period and the capacitor ratio. This idea made it possible for active filters to be
implemented in 1C form. Furthermore, MOS capacitors are nearly ideal, with very low
dissipation factors and good temperature stabilitv. As an economical approach,
sampled-data filters can be fabricated using memory-like NMOS and CMOS
processing. This analog and digital circuitry can be placed on the same chip. For the

reasons presented above switched capacitor filters became attractive and useful.

B. NOTATION

In general sense, a switched capacitor network (SC) would be made up of
switches, driven by an external clock, capacitors, and OP-amp if it is needed.

[t is appropriate to identifv some of the notations and symbols that will be used
throughout this thesis. The switch symbol will always be shown open. It is said that
the system has an n-phase clock, if the period of clock, T. has n segments
corresponding to each phase. For simplicity, a two-phase clock is going to be used.

Each switch associated with the proper clock phase will be designated by the symbol

D,
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where K is an integer representing the number of clock phases in the svstem. Typiczs
a switch is closed only once during the clock period. It is very important in SC
networks to ensure that at any time, no two switches driven by different clock phases
will be closed simultaneously (short circuit). Therefore, each phase of the clock has .
have a less than 50% duty cvcle. This is known as the nonoverlapping clock. Biroiar
two phase nonoverlapping clock is shown in Figure 1.1. A convenient complementary
notation for the clock phases is denoted by odd defined as (Dl and even, defined as @ ..
Thus, the sampled data waveforms can be stated as the sum of their odd and even ‘
components, e Or 0.

CLOCK
A ;
t 1 '
> :
!
®1
\ -
t
>
0, :
t ! ;
> |
|
|
_
Figure I.1 Waveforms of a Two-Phase Clock.
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[f we want to express the transfer function of a SC network, we can write at least
four transfer functions corresponding to even and odd phase. A useful notation for the
transfer function is shown in Equation 1.1; where i and j can be either e or o.

V,i(2)

Hi(z) = V. i(z)

(eqn 1.1)

Since the switched capacitor networks have sampled data character, they can be
treated similar to digital filters and analized in z-domain. However, SC filters are
analog networks; thus, the analog concepts of impedance and loading, which are
absent in digital filters, are retained. To solve this problem and to be able to apply
network theory, z-domain equivalent circuits, are used, (also known as building
blocks).

C. SWITCHED CAPACITOR EQUIVALENT RESISTORS

In this section realization of continuous resistor will be denoted in several
methods using switched capacitor networks. The main goal here is to have the ability
to replace the continuous resistor using an equivalent SC realization. Several methods
are developed for continuous resistor realization. Four of these realizations are
discussed below. First, is the parallel switched capacitor resistor realization. In this
method, the circuit in Figure 1.2 is considered.

R

L Vv
D CT ?tug<—_—___—> uxi) vz()t

f/\+

Figure 1.2 The Parallel SC Resistor Realization.
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Initially, both switches are open and the capacitor is completely discharged. In
the odd phase, ®, is closed and capacitor will be charged to V, this can be expressed
in the following

Qty+T2) = CV, (eqn 1.2)
Because of the nonoverlapping clock, first ®, will be open and then even phase

will start, <D2 will be closed, and C will be charged to V,. In this phase, total charge on
the capacitor is

Q(ty+T) = CV, = CV, (eqn 1.3)
We note that the final charge on the capacitor during one phase period is not

necessarily equal to the charge flowing past the voltage sources during that period.
The current can be written as

i = dqdt (eqn 1.4)
dq = CdVv (eqn 1.5)
dq = C(Vz—Vl) (eqn 1.6)

on the average

C(v,—-V
I = —(TLL) (eqn 1.7)
V.-V C
—z—ll = -f- (eqn 1.8)

This yields the following relationship for parallel realization
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R=TC (eqn 1.9)

where T is the clock period.

Second, let us consider the circuit shown in Figure 1.3 called the series switched
capacitor realization of the continuous resistor. Using the same previous calculations
for parallel SC resistor realization we can obtain Equation 1.9 as equivalent resistance
for this type of realization.

Figure 1.3 The Series SC Resistor Realization.

A third realization is a combination of the parallel and series realization. This
type of circuit is shown in Figure 1.4. Initially, again, both capacitors are discharged
and switches are open. In the odd phase, ®, is closed and C, is charged to V,.

Q(ty+T'2) = C,V, | (eqn 1.10)

[n the even phase, @, is open and @, is closed respectively.

Qytg+T) = C(V,= V,) + Cy(V,~V)) " (eqn L.11)
.a.
consequently
Q)+ T) = C(V,—V,) (eqn 1.12)

Equation 1.12 in fact is the component of Q.(t,+T) with the minus sign. If we
continue to take the other phase, which is odd phase, we can write the following
equation

14
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Q,(ty+3T;2) = Cy(V,~V,) (eqn 1.13)

So far, we completed one clock period, from T/2 to 3T/2. Thus, we calculate the
total charge going into voltage sources.
Ql = u.“wildt = u.’-vildt"-\Jwildt
= Q(tg+T) + Q)(ty+3T/2)
where u= gt T2, v=t4+ T, w= gt 3T;2. On the average

C(V,=V,) + CyV, =V,
. 11 ‘['2 2172 (eqn 1.14)

xS (eqn 1.15)

Ulib C

I L
1T
!

Figure 1.4 The Combination of the Parallel and Series Realization.

This realization is known as series-parallel realization of the continuous resistor.
As it was seen from the Equation 1.15 the equivalent resistor depends on C; and C,. If
the capacitor values are chosen equally, then Equation 1.15 becomes

R =T22X (eqn 1.16)

Since twice the charge is transfered from one end to another, the resistance value
is reduced by 2, as compared to the previous realizations.
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There is another realization of the continuous resistor which has indeed the same
result as the series-parallel realization. This configuration is shown in Figure 1.5 and
known as the bilinear switched capacitance realization of a continuous resistor.

ne) ‘Dj

Figure 1.5 The Bilinear SC Realization of a Resistor.

In this approach, all switches change position twice every clock period.
Therefore, actual clock period applied to circuit is T,2, rather than T. We can put T2
in place of T in Equation 1.16 and obtain

R = T/4C (eqn 1.17)

In order to show some practical differences of these realizations, some outcomes
of the experiments will be discussed and displayed in the next sections.

D. CHARGE CONSERVATION ANALYSIS

This method is a slightly different type of application of Kirchoff's current law,
where charge q is used rather than current. In general, because of the two phase
clocking operation, a pair of charge equations can be obtained, which characterize the
charge conservation condition at a particular node for all sample instants. A pair of
charge equations consist of both equations for the even sampling instants and for the
odd sampling instants. These are written as follows

for even clock phase (®,)

q5(t) = q°_(t) + q°° (0, U>t
for odd clock phase (®,)

Q°(t) = QL (1) + g€ (1), U>t
16
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where q,(t') is the charge held at one particular node at reference time t', q_(t) is the

charge at the particular node from the previous phase period, called memory charge,

and q (t) is the charge injected at that particular node, called contribution charge.

. SC networks are characterized mainly in terms of charge-transfer functions on
which the discrete-time voltage v(kT) and discrete-time charge differentation Aq(kT)

are used as variables.

Assuming a SC network with i capacitors, and N denotes the total number of

capacitors connected to a node P during even and odd clock phases, charge variations
can be written as

AqS,(nT)= Y,q°,(nT) = Y@, l(n=1)T] (eqn 1.18)

for even n, and i= 1,2,....\'ep.

Aq®(nT) = Yq°,(nT) = ¥ ¢ l(n = DT] (eqn 1.19)

forodd n, and i= l,2,....\'op.

In the z-domain, the above charge equations can be described as follows

AQ ()= T,Q%,() =7 Q%) (eqn 1.20)
where t= 1....,.\'ep.
AQ ()= Y, QD)7 T () (eqn 1.21)

where i= l,...,.\op.

Equation 1.18 through Equation 1.21 are going to be used throughout this research.
E. EXPERIMENTAL DEMONSTRATION OF SWITCHED CAPACITOR AS
EQUIVALENT RESISTOR
In this section, the mathematical and theoretical relationship between SC
networks, of which the output is a sampled analog signal, and the corresponding
equivalent resistance value found in the previous section, will be verified experimentaly.
As discussed previously, a two phase clock will be needed for all SC network

realizations. These two phases can be practically generated from a single clock using a
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simple digital circuit shown in Figure 1.6 This circuit is capable of producing two
nonoverlapping output clocks that can be used as the two phase clock needed. Output
of the NOR gate will be high whenever both inputs are low. This ensures that one
phase will be high when the other is low. To provide a larger margin between the two
phases of the output clocks (longer nonoverlapping time), two inverters were utilized in
each feedback loop to create a longer delay. In the lab, CDJ4049AE CMOS bipolar
gates were used as inverter, which has approximately 135 ns delay time, and CD4001AE
CMOS bipolar gates were used as NOR gate, which has 20 ns delay time. Master
clock, which a is bipolar square wave, was provided by EXACT MODEL 120
WAVEFORM GENERATOR. The output of the clock circuit is shown in Figures 1.7,
1.8, 1.9. The nonoverlapping time was found to be 30 ns as expected.

rL MASTER CLOCK
q’z
S—> B
4001AE
CDAO0A9AE CDAOASAE @
CDA0A9AE
4049AE
€040 CD4049AE CDAO01AE
% > o,

Figure 1.6 The Two Phase Clock Circuit.

Two examples of SC resistor realizations were considered. The first is the parallel
switched capacitor realization of a continuous resistance. A simple voltage divider
network was constructed using this realization to demonstrate how close the
experimental results are to the computed values. This circuit is shown in Figure 1.10.
The switches used in this circuit are the CMOS Bilateral Switches CD4066B. These
devices are most suitable for switched capacitor applications due to their lower channel
resistance (80 ohms maximum), and will be used in all the experiments of this research.

18
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Figure 1.7 Two-Phase Clock.
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Figure 1.§ Leading Edge.
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Figure 1.9 Falling Edge.

o ®
1 Re
e yd 2 Vout a ut
* < 2.2 + 2. 2K
- — e <> vin(y
Vv)n=7. Sy 2

Figure 1.10 Experimental Circuit Using Parallel SC Realization.

The results of this experiment using 30.96 KHz and 101.19 KHz clock frequencies are
shown in Figure 1.11 and Figure 1.12.
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PARALLEL SWITCHED CAPACITOR REALIZATION OF RESISTANCE

100

100

RESISTANCY. VALUE
o

® ;
\J

* :
:

’rO .
Figure 1.11 Experimental Result of Parallel SC Realization. !
PARALLEL. SWITCHED CAPACITOR REALIZATION OF RESISTANCE _
t ~
- CLOCK FREQUENCY = 101.19 KHZ A
w

t -

RESISTANCE VALUE
100 100 0

-0

100

Figure 1.12 Experimental Result of Parallel SC Realization.
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The second example is the bilinear switched capacitor realization of a continuous
resistance. This experiment was conducted to compare the experimental results
obtained using this topology and the theoratical value given by Equation 1.17. The
results were also used to show the advantage of this topology over the parallel
realization technique. The circuit used in this experiment is shown in Figure 1.13.
The result using two different clock frequencies, 51.1 KHz and 101.82 KHz are
displayed in Figure 1.14 and Figure 1.15.

In all of the above results, one can notice some deviation between experimental
and computed values. These are caused by nonideal properties of the switched
capacitor which are going to be discussed later in this section [Ref. 1].

These experimental results show that different SC realizations can be used to
simulate resistors when switched capacitor value is within certain range depending on
the clock frequency. Otherwise the use of equivalent resistance can lead to gross errors
[Ref. 2].

Altough the bilinear realization vields a better approximation, there is an
important disadvantage which is known as parasitic capacitance. This idea may be
shown in Figure 1.16. The parasitic capacitance, Cg, is the capacitance which is
virtually placed between one or both plates of the switched capacitor and ground. The
value of this parasitic capacitance can reach 10 percent of the switched capacitor
[Ref. 3].

Because of this parasitic capasitance, final equivalent resistance value were found
to be lower than expected as seen appearently in Figure 1.14 and 1.15. For this reason
the value of C can be selected a few percent lower than the nominal value to neglect
some of effects of Cg. When C is lower than the computed value, according to
Equation 1.17, R becomes larger and matches the computed line in Figure 1.14 and
Figure 1.15.

F. NONIDEAL PROPERTIES OF THE SWITCHED CAPACITOR
The use of CMOS FET as switches introduces some secondary effects to the

switched capacitor network. These effects may be classified as follews [Ref. 1}].

1. Clock feedthrough.

2. OfFset error and noise.

3. Nonlinear P-N junction capacitance.

4. Incomplete transfer of charge.
These secondary effects will be studied throughout this research.
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Figure 1.13  Experimental Circuit Using Bilinear SC Realization.
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Figure 1.14 Experimental Result of Bilinear SC Realization.
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II. THE BILINEAR TRANSEORMATION AS A SC FILTER DESIGN
EB EQR ﬁ UE LT SIG

vallQ

A. GENERAL

Since the switched capacitor filters are sampled version of analog filters, the main
goal of this chapter is to set up a bridge between continuous and discrete time
domains, and use this as a design tool.

Since filters are tvpically specified by frequency-domain requirements, 1t is
convenient to have a mathematical expression that allows to transform rational s-
domain transfer functions to rational z-domain transfer functions. Such an expression
should possess two qualities:

I. Stable s-domain transfer functions map into stable z-domain transfer functions.
2. The imaginary jw-axis of the s-plane map onto the unit circle of z-plane.
Item 1 ensures that transformed z-domain transfer functions will be stable. Item 2

-

ensures that not only will they be stable but that the shape of the gain response can be
preserved.

From digital signal processing environment, there are several major mapping
procedures which are used to transfer the information from s-domain into the z-domain
or vice versa. They are as follows

1. Backward Difference (BD) Transformation

2. Forward Difference (FD) Transformation

3. Lossless Discrete Integrator (LDI) Transformation
4. Bilinear Transformation

By setting s= — a + jw and evaluating z, it can be determined whether items 1
and 2 are satisfied. The backward difference transformation maps the jw-axis inside

the unit circle. Thus, item 1 is satisfied; however, item 2 is not. This mapping is stated
as follows

z=1;(1 — sT) (eqn 2.1)
Appliving the same procedure for the forward difference transformation, it can be
showed that the FD maps the jw-axis into a straight line outside the unit circle. Thus,

the forward difference transformation satisfied neither item 1 nor 2. This
transformation can be expressed as follows
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z=1+sT (eqn 2.2)

It can be concluded that the forward difference transformation maps s-plane poles and
zeros with high quality factor into z-plane poles and zeros with higher quality factor.
The resulting z-plane poles may be unstable. One can determine that the FD is
unsuitable and that the BD is marginally suitable (for wT < < 1) for transformation.

The lossless discrete integrator (LDI) transformation and the bilinear
transformation satisfy two qualities.But, the LDI transformed transfer functions being
realized require twice as much hardware as that required to realize bilinear transformed
transfer functions. In the previous chapter, the results of the experiments showed that
the bilinear realization of the continuous resistance would appear better than others.
The bilinear realization is also verv related to the bilinear mapping procedure that will
be explained later in this chapter (Section E). For these reasons, the bilinear
transformation will be deeply studied and vital points underlined so that one can use
these points as a design aids.

B. BILINEAR TRANSFORMATION

The bilinear transformation is a method which is based on numerical analysis
techniques. It solves the difference equation, which represents the system, according to
the trapezoidal rule. In order to illustrate the technique let us follow an example. As a
notation, X,(t) is used for input signal of an analog system and y,(t) as the output
signal of the system. Let us assume that these two signals are related to each other by
the first-order differential equation

dy (0 _
—2—+byy,(t) = ayx(t) (eqn 2.3)

b
I ae

The corresponding analog system transfer function is

a
(s) b5+, (eqn 2.4)

y,(t) can be expressed as follows




d »
V(1) = l()_‘l-'%t-(-t—)(lt-% Y,(tg) (eqn 2.5

In this step, if the signal is sampled every T second and if t=nT, t;= (n-D)T, then

v, = o pfTya(ode + v (n =17 (eqn 2.6)

{(n

[f the integral process is evaluated by the trapezoidal rule we obtain
v(nT) = v .(n=DHT)+T 2y (nT)+ v J(n= 1] (eqn 2.7)

From the original differential equation

: By 0
v, (nT) = — -Eya(nl")**-b—lxa(nT)
substituting into Equation 2.7 we obtain
ya(nT)-ya((n-l)T) = T'2[-b, bl(ya(nT)+ya((n-l)T))+a0 bl(xa(nTHxa(n-l)T))].

Taking the z-transform and solving for H(z) gives

H(Z) = Y(Z) = aO |
X(z) 21—z +b

l? 1+270 70

(eqn 2.8)

If H(z) is compared with H(s), relationship between s and z can be obtained easily and

written

H(z) = H(s) | ) 5 1= {eqn 2.9)
BENTTRR

This can be shown to hold in general since an N"-order differential equation can be

written as a set of N first-order equations of the form of Equation 2.3.

2 1-271
s = _TW (eqn 2.10)
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or

1+(T:2)s
1=(T 2)s

(eqn 2.11)

That is, the invertible transformation of Equation 2.10 is recognized as a bilinear

transformation. Setting s=a + jw give us

_ 1+(T2)a+jw)
1=(T.2)(a+jw)

by letting z = reje, we obtain
_J@em+al+w?

= d

T D arrws an
= tan e N el Y
0 = tan (2,T+a) tan (2_.’T—a )

From Equation 2.13 the bilinear transformation maps

(eqn 2.12)

(eqn 2.13)

1. The right-half of the s-plane onto the region exterior to the unit circle where
|z]=1 of the z-plane. This comes [rom the Tfact that @ >0, r> 1.

2. The imaginary axis of the s-plane onto the_unit, circle lIzl= 1, of the z-plane.

This conies from the fact that a=0, z=exp[j2tan

l(wT‘f)

3. The left-half of the s-plane onto the interior of the unit circle, |z|=1, of the z-

plane, because for a <0, r> 1.

From item 2 several other important observations can be made. For a=0 and w=0,
z=1e0 which indicate that the s-plane origin maps to the point (1,0) in the z-plane.
For a=0 and w—=, z=1ei and for a=0 and w=0, z= 1e’i™ which indicate that

the positive and negative w-axis in the s-plane map onto the upper and lower semi-
circles where |z]=1 in the z-plane. Obviously, a stable analog filter produces a stable

digital filter.

Since the entire imaginary axis (s=jw) in the s-plane, maps onto the unit circle

(Izl=1) in the z-plane, nonlinear relationship between analog and digital frequencies

can be easily seen. The distortion introduced here is known as the warping effect and it

is illustrated using Equation 2.10 for s=jw and z= ei®.
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2 sin(02)

W= = ———
T " cos(0:2)

(eqn 2.14)

and thus the imaginary axis in the s-plane is related to the unit circle in the z-plane
through the relation

w = (2'T)tan(0.2) (eqn 2.15)

where 0 is the digital frequency and w is the analog frequency.

To obtain H(z) from H(s) is rather tedious and time consuming. This
transformation thus is generally done by the computer. For a second-order transfer
function a computer program has been written and presented in Appendix A.

C. THE EFFECTS OF HIGH SAMPLING RATE

In the mapping process, generally the s-domain specifications of the filter are
known. But, there might be some ambiguity if it is the case of obtaining a function
H(s) from a given function H(z). However, when the sampling ratc is much greater
than the frequencies of interest, various assumptions can be made to obtain
approximate relationships between the two domains.

For small |s|T, Equation 2.11 can be written

(sT)? (sT)?
zZ= l+ST+—2—+T+.... (eqn 2l6)

For high sampling rates, the second-order effects can be ignored, so Equation 2.11 can
be approximated as

z=1+sT (eqn 2.17)
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Equation 2.17 shows that as the sampling period T is decreased, or sampling frequency

increased, z approaches the point z= 1.

The characteristic equation of the second-order analog filter can be expressed as

w
s2+ 5 Ls+W 2 =0 whereQ is the quality factor (eqn 2.18)

The solution of the characteristic equation, that is the poles of the system can be
described as

w Y ——
1,2 q
’ 2Q 2Q

On the other hand, the characteristic equation of the second-order digital filter can be
written as follows

22 =2rCosBz+r12 = 0 (eqn 2.20)

using the approximation obtained in Equation 2.17

2, = l+sl’2T consequently
z 5, = reti0
r=4J1 --(WnT,“Q)'*'(WnT)2 (eqn 2.21)
W TJ/4Q%—1
0 = tan’! —2 /4Q (eqn 2.22)
2Q-wW, T
if Equation 2.21 is solved for Q
W T
Q o (eqn 2.23)

- (1= )1+ 1)+(W_T)>?
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if Q is greater than unity as well as assuming high sampling rate, Equation 2.23 can be
approximated as

WT
(1= )+(W T)?

Q~s (eqn 2.24)

In the case of high sampling rate warping effect can be neglected and § ~W _T. Thus
Equation 2.24 becomes

0

oy

for 2(1=r1) > > (W_T)? (eqn 2.25)

from Equation 2.25, r can be approximated as

n

0
|- — (eqn 2.206)
2Q

and Cos0 can be written as

02
Cos® = 1— =N (eqn 2.27)

Note that Equation 2.21 through Equation 2.27 are valid at high sampling rates and
for large value of Q. For simplicity, if the characteristic equation of the z-domain
transfer function is considered as

22+bz+b, = 0

1+b,+b
W = Ki—l—-2 (eqn 2.28)
J1=b +b,
For bilinear transformation,
l+b,+b}(1-b, +b,)
_ M{+b +b)l-b +b, (eqn 2.29)

2(1-b,)
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where K is a constant involving a frequency prewarping [Ref. 4] and is given by

K w ( 2.30)
= ———— eqn <Z.
tan(0,2 an &2

When high sampling rate condition is satisfied, 8,2 < < 1, K simply becomes

K=2T (eqn 2.31)

D. ELEMENT TRANSFORMATIONS

In order to treat SC filters in z-domain, some concepts which don't exist in
digital filters should be considered. These concepts are basically associated with
passive circuit clements, which are inductances, capacitances and resistances.

If the bilinear transformation is used directly to obtain the admittances, one can
use the results as an equivalent elements which are derived as follows. This method is
usually known as Building Block Approach.

1. Capacitor

If the relationship between current and voltage across a capacitor is written as

d dv
i(t) = ¢ —v(l) that is, :iq_(t)= c -;—:t)

by taking Laplace transform of both sitdes
sQ(s)—q(0) = c[sV(s)— V(0)]  where, Z[q(t)] = Q(s) and ZL[v(t)] = V(s).
q(0) = v(0) = 0 as initial conditions.

Q(s) V(s) = C

using bilinear transformation

_Q@@) _
Yc = V@) =C (eqn 2.32)

Equation 2.32 can be considered as admitance, which is not the way it is

described. This new definition comes from the fact that the analysis of the SC circuit is
done by using charge variation equations.
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) 2. Resistor

If the same procedure followed for capacitor is applied for resistor, the

following equations can be easily written.

Since i(t) = Gv(t) where G = |/R
dgq(t)
—_— = Gv(t
dt vt

taking Laplace transform of both sides
sQ(s) = q(0) = GV(s) where q(0) = 0
Qs) _G

V(s) - s

using bilinear transform vields

R=-V75=T—71—z'l (eqn 2.33)

3. Inductor
The instantaneous voltage and current for an inductor L are related by

_ di(t)
v(t) Ldt
d2

vit) = L q(zt)

taking Laplace transform
V(s) = L[s2Q(s)— sq(0)—q'(0)] where q(0) = q'(0) = 0

_Q_(s)___ l—- using bilinear transformation yields
V(s) Ls? g ?
2) 1 T2 (1+2z71)2
V(z) Ls 4L (1—z7")

To express the single floating capacitor shown in Figure 2.1, charge variation
equations, Equation 1.20 and Equation 1.21, can be used.

AQ%\(z) = CV®,(2)=Cz "2 V° (2) = CVE(2)+ CZ" V()

AQC (z) = CV°(2)=Cz""2V® (2) = CV°,(2)+ Cz "* Ve (2)

AQS,(z) = CV&,(2)=Cz 2V°)(2)=CV® (2)+ Cz "2V° (2)

33




Figure 2.1 Floating Capacitor.

AQ%,(z) = CV°,(z) = Cz"*3Ve,(2) = CV° (2) + Cz" "2 V* (2)

From these equations

AQ%(2)+AQ°(2) = C(1=Z ")[Ve (2)+ V°,(2)] (eqn 2.33)
- C(1=7 ")V, (2) + V°,(2)]

and

AQ%(2)+AQ%(2) = C(1 =7 "*)[Ve(2)+ V()] (eqn 2.36)
= C(1-z 1)V (2)+ VO (2)]

Since AQ(z) = AQ%z)+AQ%z) and
V(z) = V¥(2)+V°(2)
Equation 2.35 and Equation 2.36 can be written as

AQ,(z) = C(1=2 ")V ()= C(1 =2 H)Vy(2) (eqn 2.37)
AQ,(z) = C(1=2 ")V, (2)~C(1 =2 1)V|(2) (eqn 2.38)
From Equation 2.37 and 2.38, admitance Y_appears as Y_ = C(1~Zz V‘)

. . . Y - : .
Since z! = &% then z7'* = eiWT.2 even though the period of the sampling
decreases to half of the orginal value. Then

! .
(z’)'l = z-" can be written.
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Y, = Cl-()" (eqn 2.39)

Since Equation 2.39 is realizable with simple SC networks, we can compare this, Y,
with Equation 2.32 and consider (1=(z)!) factor as a scaling factor [Ref. 3.
Therefore Equation 2.32, Equation 2.33, and Equation 2.34 can be written as

Y, = Cll-z) (eqn 2.40)

YR = GT:2(1+z) (eqn 2.41)
T2 (1+271)2

= i =) (eqn 2.42)

This would be a good place to revisit the bilinear switched capacitance realization of
the continuous resistor shown in Figure 1.5. It is also known as the floating bilinear
resistor. Charge equations in z-domain are

AQ (2) = CV®,(2)+Cz "2V° (2) = CVe,(2) = CZ" "2 V°,(2)

AQ°(2) = CV°,(2)+Cz "2 V¢ (z) = CV°,(2) — Cz* ' *VE,(2)

AQ,(2) = CVe(2)+Cz " 7V°,(2) = CV® (2) = CZ" 2V° (2)

AQC,(z) = CV°,(2)+Cz" "2Ve,(z) = CV° (2) = Cz"'*V* (2)

AQ% () +AQ°, = C(1+2 ")V (2) = C(1+2 "*)V,(2) (eqn 2.43)

AQ%,(2)+AQ0%(2)= C(1+2" ")V, (2) = C(1+2 ")V (2) (eqn 2.44)
Equation 2.43 and Equation 2.44 yields

Yp = C(1+2"'%) (eqn 2.45)
Since (z')! = z° "2 this can be written as
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Yg = C1+(z)h) (eqn 2.46)

if Equation 2.46 is compared to Equation 2.41
YR = (GT2(1+(@2)") = C(1+ ()

G=2CT

T
R=— and T =T.2
2C

R = — (eqn 2.47)
= — eqn 2.=/
ac d

which is the same as Equation 1.17, as expected.

E. INTEGRATORS USING BILINEAR TRANSFORMATION

Since the integrators are widely used circuits in analog signal processing, their
transfer functions will be investigated and compared with the results obtained in the
lab to decide how much error would be introduced using bilinear transformation.

1. Lossless Integrator

An analog lossless integrator is shown in Figure 2.2. If thelresistor is replaced

by the bilinear SC resistor equivalent circuits presented in Chapter I, Figure 2.3 is
obtained and obviuosly

c = T

1
4Rl

c2
1 }

Rl > - |

Figure 2.2 An Analog Integrator.
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Figure 2.3 Bilinear SC Integrator.

if charge variation equations are written in the z-domain,
" < . I V4
C,V°,(2) = C,V&,(2)27 " = C, V¢ /(2)z " = C [ V°(2) (eqn 2.48)
can be obtained for odd phase and
Y L
C,Ve,(2) = C,V°%(2)z""* = C,V°|(z)z" " * = C, V*,(2) (eqn 2.49)
can be obtained for even phase. Knowing that
Vi(2) = Vo, (2)+ V°,(2)

Vy(@) = V@) + V°y(2)
from Equation 2.48 and Equation 2.49

V,(2) C, 1+ )
H(z) = . PP L (eqn 2.50)
V,(2) C, (1-z%)

. V7 N . L. .
Sincez”* = (2) ! the transfer function H(z) is rewritten as

s oy,
a .

.
el

H(z) Cl( 1+(z)! ) 51 =
2)= T 00— tegn 2.5 "
C, 1=z} o

.

=

Transfer function for a simple analog integrator is N,

X

] T ) i :.n‘

H(s) = = ——= where R, = —— ,asin Equation 1.16 -

R,C,S 2C A

1 & l -

.
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2C

H(s) = = —1— (eqn 2.52
(s) R q )
If Equation 2.51 is compared to Equation 2.52 '
2 -7t
= = )
T ( 1+2z!

which is nothing more than bilinear mapping.

The lossless integrator would not be implemented due to the fact that the
operational amplifier requires some dc feedback. The computer simulations of both
H(s) and H(z) are shown in Figure 2.4 and Figure 2.5. These figures demonstrate
clearlv the nonlinear relationship between s-domain and z-domain due to the warping
property introduced by the bilinear transformation.

2. Lossy Integrator and Experimental Results

As mentioned earlier, the lossless integrator can not be realized in practice.
Instead, the lossy integrator is considered in practical SC circuit. The lossy bilinear
integrator is shown in Figure 2.6. The analog lossy integrator’s transfer function H(s)
can be written as

Vo( s) I

Vi) RCs+ L(R,G))

1

H(s) = (eqn 2.53)

where R| = T (4C;) and R; = T.(4Cy).
If a high sampling rate is used the warping effect can be ignored. The bilinear
transformation yields the following

(1+@)™h
A1+ @)yH+C, G-y

C
H@z)= -2-L (eqn 2.54)
C3

As an experimental set of values in the lab,

C, = 226 pf
C, = 431 pf
Cy; =4d2pf

were choosen and CD4066 CMOS switches and LM741 Operational Amplifiers were
used. H(z') was obtained by the computer program giv=n in Appendix A, using the
following equation.
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Figure 2.4 Bode Plot for an Analog Integrator.
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Figure 2.5 Magnitude Response for the Bilinear SC Integrator. i
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Figure 2.6 The Lossy Bilinear Integrator.

l - -
H(s) = —1.066 10° Y TETRTS (eqn 2.55)

, 0.5195(z")2 + 1.039z" +0.5195 . )
H(z) = - — : with f = 50.8 KHz (eqn 2.56)
(z')*+0.0193z' = 0.98066 ¢

The computer simulation results were displayed in Figure 2.7, Figure 2.8, Figure 2.9,
and Figure 2.10. Using building block approach, the transfer function of Figure 2.6 can
be readily written as follows

Hz) = — ¢ _(+@h (eqn 2.57)
C, (1+Cy Cy) (1= (CyC)2’ e

Using the previuos capacitor values H(z') becomes

Hi = 052437 20,5243 (an 2.58)
zZ) = egn =.d
1.00974z = 0.99026 1

Equation 2.58 is shown in Figure 2.11 and Figure 2.12

Finally Figure 2.13 shows the output of the practical circuit of Figure 2.6. The
experimental result perfectly matches all the computer simulations outputs of Figure
2.7 through Figure 2.12. Further more, a smoothing low-pass filter is connected to the
output of the practical circuit to get rid of the clock feedthrough problem mentioned in
Chapter I.
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Figure 2.7 Computer Simulation of Lossy Integrator in s-Domain ( Magnitude).
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Figure 2.9 Computer Simulation of Lossy Bilinear Integrator in z-Domain (Magnitude).
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Figure 2.10 Computer Simulation of Lossy Bilinear Integrator in z-Domain (Phase).
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Figure 2.13 Experimental Result of Lossy Bilinear Integrator.

These results showed that the following design steps can be used to meet the .
given specifications.
1. Definitions of the filter specifications in the frequency domain.

[

Construction of the continuous transfer function H(s).

3. Transformation from H(s) to H(z’) using bilinear mapping technique.

4. Use of building block approach as implimentation.

5. ;inally construction of switched capacitor realization of the filter. Or after step !
6. Resistor simulation of the continuous resistance. !

Go to step 5 (taking into account nonideal properties of the SC networks).

The most important outcome of this experiments is the different approaches
one can use to simulate continuous resistance using bilinear switched capacitor
realization. In one approach the bilinear transformation is used through the step . 2,
3, 4, 5. The other approach would vield the same results using steps 1, 2, 6, 3, 7. This
fact is shown in Figure 2.11 and Figure 2.9 respectively.
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I1II. PROGRAMMABLE GIC SC FILTER

A. GENERAL

The programmable filter is a very interesting and useful application of the SC
networks. This is due to the fact that the SC circuit's frequency response can be
changed by varying clock frequency. In fact a remarkable feature is that, multiplying
the clock frequency by a factor @ results in scaling the frequency response (multiplied)
by the same factor along the frequency axis.

Most of the active SC networks have limitation over the clock frequency range,
depending on the operational amplifier’s settling time used in the circuit. In today's
technology, MOS op. amps. can be designed with 0.5 psec settling time to reach 0.1%%
of its final value of the step response. Clock rates up to | MHz seem feasible. In
practice, MOS op. amps. has been designed which settle to within 0.1% of the final
value in 2 psec and achieve dc gains greater than 60 dB. Therefore sampling rates of up
to 250 KHz, can be easily achieved. Considering the Nyvquist criteria, almost a 100
KHz signal can be processed using SC networks, if the op-amp slew rate is not taken
into account.

The design approach used in this research, in general, is the extension of the
design explained in [Ref. 6]. It addresses three different aspects of programmability.
These are

1. Programming the filter topology using a minimal set of elements to obtain anyv
;}'gienglfvﬁggerﬁ?o E:‘.g?é’_on esired, tor example LP, HP, BP, N\ and AP, by using

2. Progamming the filter's transfer function parameters (pole resonant frequency
and quality factor ) for a chosen tvpe ofpﬁltermg function by using a digital
control word.

3. Reprogramming the filter’s transfer function parameters by changing the clock
frequency (practically from 50 KHz to 250 KHz).

B. THE PROPOSED GIC SC PROGRAMMABLE FILTER

The basic active network considered as the heart of the GIC SC programmable
filter is the Generalized Immittance Converter (GIC) structure [Ref. 7] of Figure 3.1,
whose superior performance was established in the [Ref. 8] and [Ref. 9]. The filters
transfer functions derived can be found in [Ref. 6].
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vin Vo

Figure 3.1 The GIC Implementation Using Op. Amps..

The bilinear realization of a continuous resistance was used throughout the
design. Table 1, illustrates that for any filter realization, five switched capacitors, two
unswitched capacitors, and two op. amps. are required. G stands for the admittance
represented by switched capacitor.

The passive elements are connected to the different nodes, shown in Figure 3.2,
for the different realizations. A set of MOS bilateral switches controlled by a digital
binary word are used to interchange the elements to achieve the different types of filter
realization. The truth table of the switch control logics is shown in Table 2. Figure 3.3
illustrates the CMOS logic circuit used for realizing this truth table.

Four of the five switched capacitors are equal and of value Ceq each, the fifth
switched capacitor is the Qp determining capacitor and of value Cq = Ceq Qp. Other
two capacitors in the circuit are equal, and of value C = -lcheq W, each. The two
equal banks of capacitors are used to control Woe Each bank contains n binary
weighted capacitors connected in parallel through analog CMOS switches as shown in
Figure 3.4. Using a digital binary word of n bits to control Wor 2% different values of C

will result at the 2 terminals of both capacitor banks that correspond to 2% different
values of Wy

46

IER S %29y Y IR T "a "0




TABLE 1
THE ELEMENTS IDENTIFICATION FOR DIFFERENT
REALIZATIONS OF THE GIC FILTER
Filter
Type | Y1 | Y2 | Y3l Yol Ys| Y6l Y7 | Y8
G
LP ¢ |c legglc|c]ofo |
Hp G G Cc G 0 G C C—
qQp
B |G |G cleclolc | & !¢
QP
N G G Cc G G 0 C C_
QP
AL G G C G G op

Using a similar technique the value of Cq can be controlled through a bank of m
binary weighted capacitors in parallel through analog CMOS switches as shown in
Figure 3.5. Using a digital binary word of m bits to control Qp, 2™ different values of
C_ can be achieved that correspond to 2™ different values of Q o Thus, full

q

independent control of the pole pair w_ and Qp are achieved by programming the

P
switches to obtain the corresponding C and Cq.

C. THE REALIZED GIC SC PROGRAMMABLE FILTER

The detailed diagram of the signal processing circuit of the constructed GIC SC
filter is shown in Figure 3.6. The value of m and n were selected m=n=4. Thus, 15
different values of w (fp) and Qp were obtained as it is illustrated at the corresponding
Table 3 and Table 4. The implemented banks for the control of W, and Qp are shown
in Figure 3.7 and Figure 3.8 with their values. The clock frequency is 101 Kllz
throughout the design. According to this clock frequency, the switched capacitors value
were choosen within range from 300 pF to SnF, using experimental result of Chapter [

Figure 1.15.
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Figure 3.2 Schematic Diagram of the Programmable GIC SC Filter
Showing the Controlled Nodesand Switches.




TABLE 2 b
THE TRUTH TABLE OF THE SWITCHES LOGIC USED .
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TABLE 3

THE FOUR-BIT WORDS THAT CONTROL W, (Fp)

Sc St Sa IDEAL ON CIRCUIT POLE FREQUENCY
nf Nt KHz
] ] 2 —_ — —_—
] ] 1 5 4.9 30. 35
? 1 ] 10 10. 4 14.3
%] 1 1 1S 15.3 g, 72
1 ] 22 19.7 ?.55
1 2 1 as 24,7 5. @2
1 1 ] 30 39.1 4,54
1 1 1 35 35 4,25
1 ] 2 2 47 46.9 3.17
4
L)
: 1 ) ] 1 52 si.8 2.87
:. .
' 1 2 1 %] 57 57.3 2.585
N 1 @ 1 1 &2 62.2 2.391
1l
Y 1 1 2 ) 67 £6.6 2.23
»
1 1 2] 1 72 71.5 2.28
) 1 1 1 ) 77 77 1.53
1 1 1 1 a2 g81.9 1.81
. CLOCK FREQUENCY = 191KHz
[)
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TABLE 4
THE FOUR-BIT WORDS THAT CONTROL Q,

sd Se Sb Sa IDEAL CN CIRCUIT QUALITY FACTOR
. pf pf Q

2 ] %] 2 - —_—

2 2 2 i 150 148 15,54

) ) 1 -] 300 2ss 7. 796

2 2 1 1 458 443 S. 192

] 1 2 2 SE0 Ses 4.52

] 1 ] 1 712 656 4.279

@ 1 1 e 862 ee3 2.864

2 1 1 1 1210 ss1 2. a1

1 %] 2 2 1009 1292 2.11

1 @ 2 1 1158 1238 1.8578

1 2 1 2 | 13e9 1385 1.68

1 2 1 1 1459 1533 1.5

1 1 2 2 1562 1533 1.5

1 1 2 1 1710 1681 1.368

1 1 1 2 LEED 1828 1.258

1 1 1 1

CLOCK FREQUENCY = 1B1KHz
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IV. COMPUTER SIMULATlOl_Di&FEKHE PROPOSED GIC ACTIVE

A. INTRODUCTION

In order to observe the theoretical frequency responses of the different
realizations, that is LP, HP, BP, N and AP, with different pole frequencies and quality
factors, the computer program, GICFRQ, has been written in FORTRAN
programming language. The Display Integrated Software Svstem and Plotting
Language (DISSPLA) has been used to produce the desired graphic output. This
frequency response program is shown in Appendix B. As it is seen this program,
accepts some inputs from a data file, related with the transfer function of the
| realization. These inputs are processed through the program and results are passed to
DISSPLA to draw the graph. One can plot the phase responses of the realizations as
well as the magnitude responses by making minor changes in the DISSPLA package.

Because of the two four-bit control words for each realization, there will be a
rather large number of input sets. For this reason a few intermediate control words
were picked up randomly. In order to compare the computer simulations to the
experimental results, the same control words are going to be choosen in next chapter.

B. SIMULATION RESPONSE(S)
1. Low Pass Filter Realization
Using the elements values prescribed in Table 1 yields the following low pass
filter transfer function

W2
p) , p)
3 +(WP,Qp)s + Wp

H(s) = (eqn 4.1)

First, it is assumed that the control word for Qp is set to 1010 which corresponds to Qp
= 1.66 as shown in Table 4. Then Figure 4.1 through Figure 4.3 are plotted by varving
the W p(f'p) to illustrate the magnitude responses of the ideal LPF GIC realization.
Second, the control word Wp is set to 1010 which corresponds to fp = 2.595 KHz as
shown in Table 3. Then Figure 4.4 are plotted lor Qp = 2.11, Qp = 4.07, Qp = 5.192.
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Figure 4.1 Ideal GIC LPF Magnitude Response.
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Figure 4.2 Ideal GIC LPF Magnitude Response. i
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2. High Pass Filter Realization
Using the elements value shown in Table 1 vields the following high pass filter

transfer function

2s?

H =
(s) s"'+(WP'Qp)s+Wp2

(eqn 4.2)

If we do the same set up as we did for the low pass filter case, we can obtain the
various magnitude response curves shown in Figure 4.5 through Figure 4.7. Figure 4.8
illustrates the effect of changing Q p ON filter response. The same quality factor was
especially chosen as in the case of the low pass filter, because sinularities and

ditferences can be illustrated more apperant in this fashion.

GIC HPF (0 = 1.68)
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Figure 4.5 1deal GIC HPF Magnitude Response.
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Figure 4.8 Ideal GIC HPF Magnitude Response with Different st.

3. Band Pass Filter Realization
The band pass transfer function of the GIC filter is

AW _/Q,)s

H(s) = — , 3
3 +(\Vp, QP)S'*'\VP

(eqn 4.3)

This will correspond to a gain of two at the pole frequency

H(ij) =2
BPF realization is simulated for various Wp(fp) when Qp = 4.52 in Figure 4.9 and
Figure 4.10. Figure 4.11 shows the magnitude response of BPF with different quality
factors namely Qp = 5.192, Qp = 7.796 and Qp = 15.534 with W'p held constant. All
figures show that the maximum gain at the pole frequency (Wp) is 2 independent of the
quality factor.
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Figure 4.9 Ideal GIC BPF Magnitude Response.
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Figure 4.10 Ideal GIC BPF Magnitude Response.
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GIC BPF (F = 2.58KHz)
FREQUENCY RESPONSE MAGNITUDE
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Figure 4.11 Ideal GIC BPF Magnitude Response with Different st.

4, Notch Filter Realization

Using apropriate element combination, a notch filter transfer function can be
obtained as

2+ W 2
n

Hs) = SH(W_ Q)+ W 2

(eqn 4.4)

Figure 4.12 illustrates the ideal notch filter amplitude response for a variety of
frequencies with constant Qp, Qp= 1.66, while Figure 4.13 for a variety of st with
constant Wp(fp). The notch frequency, W, is determined by both pole frequency and

quality factor.As it is shown in the figures, if one of the parameters is held as constant

Al L

the notch frequency still will continue to shift along the frequency axis.
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\ 66
‘.

‘. .“ —‘ _m L::t'; N ';1";&._."




5. All Pass Filter Realization
As proposed in Table I using the same element values as in the notch filter

case but different output node, all pass filter transfer function can be derived as

2 . 2
s (WD, Qp)s + Wp

4.3)
24 , + 2 (eqn ;
(W, Qs+ W

H(s) =

which takes the value of Magnitude = | as ideal amplitude response. All pass transfer
functions are often needed for delay equalization, that is, the phase response of the
circuit has to have 360¢ shifting property around the pole frequency, fp. This property

agree with the computer simulation result shown in Figure 4.14.

GIC AP (Q = 1.66) |
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Figure 4.14 [deal GIC AP Phase Response. N
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V. E} E G
EXPERIMENTAL RESULTF?LT'ERE PROGRAMMABLE GIC SC

A. GENERAL
All parts of the circuit, of which detailed designs were shown in Chapter 111, were
integrated to construct the complete digitally controlled programmable GIC SC filter.
After the circuit was built a variety of measurements were taken in order to study the
response of the network with the different configuration, as explained in Chapter III.
The switches in this GIC SC filter, are devided into two sets, each performing a
different function. The first set of switches are used to control the filter charactenistics.
The second set are used for resistor realization using the switched capacitor techniques
discussed earlier. The effect of the control switches which introduce a resistance of 80
ohm each at closed position can be found in [Ref. 6]. There are some general problems
which may cause changes in the response of the network. These are listed below.
1. rTul)ltt;.e.pro!;otype board creates capacitance values in the order of pfs at each
2. The master clock was provided by the EXACT MODEL 120 waveform
generator which is not so stable. Its output varies with the time.

3. All switches introduce a resistance value from 60 ohm to 90 ohm at closed
position.

All probes being used for measurement have some capacitance value.
Grounding problem.

The equipment scaling problem exists during the measurements.

- NN

Capacitor values change within their tolerance limitation.
In order to compare the experimental result to the computer simulation graphs,
the closest control bitwords were used to set up the pole frequency and quality factor.
After the response of all filter configurations were plotted, the clock frequency was
varied to observe changes of pole frequency and the amount of linearity between clock
and pole frequency. Finally, measurements were taken to show the sensitivity the
quality factor to clock frequency changes.

B. LOW PASS FILTER

With the topology-control bitword 000, the network realized a Low Pass Filter
response. Altough all calculations were made under 101 KHz clock frequency, because
of the unstability of the waveform generator mentioned above, average clock frequency
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was found to be 99.5 KHaz. Qp was set to 1010 which corresponds to approximately
1.66. Magnitude response curves were plotted within the range of programmability of
pole frequency, namely from 1.81 KHz to 30.3 KHz. Expected results were obtained
up to 7.55 KHz. Beyond this frequency, the gain declined slightly, while quality factor
experienced little changes. This can be seen in Figure 5.1 through 5.3. Control bitword
for pole frequency was set to 1010, which is fp=2.5 KHz, while changing Qp control

d bitword to 1000, 0101 and, 0011 which corresponds to 2.11, 4.07 and, 5.19 respectively.
Figure 5.4 was plotted under these conditions. The plot is quite simular to computer
simulation except Qp=5.l9. This is also expected because of the fact that setting up
the quality factor to 5.19 requires 440 pf capacitance value. This value falls out of the
range that we considered 'in Figure 1.15. The continuous resistance value was not
realizable according to the design value. As a result, some deviation from qualty
factor was experienced. Figure 5.4 shows that the pole frequency was not effected.
since the 440 pf capacitor is not the element used to control fp.

=t g
(@e1.08) L} =f
foxes 3 Eme E{EiF

=T

fp32.38 KMe
tpa2. 38 Kiis |

o : B L T T - D Tt/ T - " c T \“-)

Figure 5.1 Experimental Result of LPF with DifTerent fp.
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Figure 5.3 Experimental Result of LPF with Different fp. i
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Figure 5.4 Experimental Result of LPF with Different Q o

C. HIGH PASS FILTER
With the topology-control bitword 001, the network realized a High Pass Filter.

For this case, all measurements are taken under 101.8 KHz clock frequency. The
quality factor was set to 1.66 for six different values of pole frequency shown in Figure
5.5.through Figure 3.7. In regard to pole frequency and gain, expected results were
obtained. But the quality factor tends to get closer to computed curve up to 5 KHz
frequency range and then diverges. On the other hand, if we consider changes in the
quality factor, as shown in Figure 5.8, the small st were implemented more accuretly.
This is because, small quality factors require larger capacitance value and these values
can realize the equivalent resistance well enough. Three different quality factors were
used when Figure 5.8 was plotted. There is no distortion in the pole frequency as

expected theoretically.
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73

T e A T VT T, Jo T 10 1o W L e B A A P T e T N,



ERE R AN NI AR IO DY WL VEUE FI T KR YT IOV AT ENRUFAPA AR R RS AN XY -'WWWWVMWMMN.’MMTT

-

D. BAND PASS FILTER

o o e
-

‘ The 010 topology-control bitword realizes the Band Pass Filter. The quality
k factor was set to 0100 which corresponds to 4.52. Figure 5.9 and Figure 5.10 were
N plotted for various pole frequencies. The results agree with the computer simulations
: with minor amplitude fluctations. Figure 5.11 was poltted at 2.59 KHz pole frequency
; for various quality factors, 5.19, 7.76, 15.5. An important observation on this figure is
) the fact that the quality factor increases, while the gain decreases. But again, similar to
" other cases, pole frequency remained constant. This situation is shown apperantly in
Figure 5.11.

.

v

-] qp=e.82 4
.! fe=101 KBs

Figure 5.9 Experimental Result of BPF with Different fp.
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Figure 5.11 Experimental Result of BPF with Different Qp.
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E. NOTCH FILTER

With the topology-control bitword 011, a Notch Filter realization can be
achieved. Figure 5.12 illustrates the amplitude response for different frequencies for
Qp=5.l9, while Figure 5.13 illustrates amplitude response for fp=7.55 KHz and a
variety of quality factors. The above figures agree with the theoretical transfer
function. Since the notch frequency, W , depends on the both pole frequency and
quality factor, whenever pole frequency (or quality factor) changes, notch frequency

and also quality factor (or pole frequency) reflect this variation as it is seen in Figure
5.12 and Figure 5.13.
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Figure 5.12 Experimental Result of NF with Different fp.
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Figure 5.13 Experimental Result of NF with Different Q o

F. ALL PASS FILTER

The topology-control bitword 100 realizes an All Pass Filter. Figure 5.14
illustrates frequency response of the realized all pass filter for different pole frequency
while quality factor is held constant. For this particular filter, 360° phase shift was
observed at the pole frequency which agrees with the computer simulat.on.

G. EFFICIENCY OF THE CLOCK FREQUENCY

In order to observe the affect of the clock frequency, fc, two different plots have
been taken. As mentioned in Chapter IlI, if the clock frequency changes by some
constant @, the pole frequency shifts by an amount which is related to this constant a.
The programmable filter can be programmed to almost any frequency (from 1 KHz to
60 KHz) by using this feature. Figure 5.15 shows this property, where the first LPF
uses 50.97 KHz while the second is using 103.5 KHz. This means that the clock
frequency changed almost 50 KHz, correspondingly pole frequency shifted almost 0.73
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KHz. The last three LPF curves in Figure 5.15 had 103.5 KHz, 201 KHz and, 299.5
KHz clock frequency. The difference from each other was almost 100 KHz,
correspondingly the pole frequencies differ from each other almost 1.5 KHz which
proves the concept stated above.

Finally, the affect of the clock frequency with respect to quality factor, Q o will
be demonsrated. In order to do so, first pole frequency was set to 1111, 1.81 KHz by
using 103.25 KHz clock frequency (curve 1 in Figure 5.16) then pole frequency, fp, was
changed to 4.25 KHz using control bitword 0111 with same clock frequency (curve 2 in
Figure 5.16). From this fp, the clock frequency was decreased until the same Fp was
realized as in curve 1. This was plotted as curve 3 in Figure 5.16. By comparing curve 1
and curve 3 one can observe that there is no major changes in terms of quality factor.
This can prove experimentally the low sensitivity of the quality factor Q pr O the clock

frequency variations.
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Figure 5.14 Experimental Result of AF with Different fp.

. WPy n Py N

" - - ‘*I A e A\Jd
A M X 3 U 0 e M W A .

W VN P 0 S PR T 0

." - - -' !



[PRITVCIW ATN VW W VY U U DR AT ORI AR U R ORI S AT ALN SO T R S TN T PR oPLT T T T I T T I R T R PO T T PO O O W X Y N N A X U TN UW T YT

']
]
\j
3%

-
)

R R A

~ o
P

N L : ; : : N : ! i
R N T N I I e
'[, PiTamdsed 4 1 ] : [ | 4' T i | + 4 .

o 7

L Ly

N ..v."".-l

SN S SR R N R

-
.

-
-
-
~
o

-
~
.‘

Figure 5.16 Experimental Result Showing the Effect of the f..




AW W RO NP WP T v v

V1. CONCLUSION

The design described here has resulted in a universal programmable switched
capacitor filter that can be digitally controlled to realize almost anv practical filter
specifications. This is done through the use of CMOS switches controlled by binary
codes to program the filter topology, the filter center frequency, quality factor. The

bilinear switched capacitor realization of a continuous resistor was used as a kev

P AT I P

concept of the research. The design procedure required developing optimum swiiching
arrangments for the minimum redundancy in components and least dependence of the
filtering function on switching imperfections such as switches stray capacitances and
non-zero and nonlinear switch-on resistance. Further investigation is needed eliminate
the effect oi the stray capacitance introduced by the switched capacitors. The
sensitivity of Qp is found to be low with respect to clock frequency. The clock
frequency could also be used to program the filter by scalling the center frequencies
through different ranges. The experimental results showed close agreement between
theory and practice. Further, these results indicate that these realizations are insensitive
to temprature and power supply variations.

This study can be extended for developing a wide bandwidth programmable

Cam-am e ol o gn an as SR S L ) gn S e e S

switched capacitor filter using the composite operational amplifier thechnique proposed
by [Ref. 9]. Such implementetation would lead to a very useful monolithic device at
moderate cost.

T

This research can be also brought into the subject of VLSI design to implement
the whole network structure into the single custom chip, which is the final goal of the

research.
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APPENDIX A
TRANSFORMATION PROGRAM

$STORAGE : 2
REAL AO,Al,A2,B0,Bl1,B2,K,F,A,SP,DELTH
REAL AZ0,A21,Az2.BZ0,BZ1 BZ2
. SP = 0.0
DELTH = 0.0062831853
N 2
= 2
NP 501
BZO = 1.0
WRITE * *)ITHIS PROGRAM TRANSFORMS SECOND-ORDER S-DOMAIN TRANSFER'
WRITE(*, *)'FUNCTION TO Z-DOMAIN TRANSFER FUNCTION USING BILINEAR'
WRITE(*,*) 'MAPPING METHOD.WT/2 << 1 IS ASSUMED.'
WRITE(*,*)'IF YOU ARE DEALING WITH THE SC CIRCUIT,YOU HAVE TO'
SR%%E *,*)!TAKE SAMPLING FREQUENCY AS TWICE AS MUCH ITSELF.'
R : '
ggig% * ;ENTER THE SAMPLING FREQUENCY IN HZ.'
WRITE *,2;'(AO*S**2)+(A1*S)+A2 IS THE FORM OF NUMARETOR'
WRITE(* *) 'ENTER AO,Al,A2’
READ *l A0,Al,A2
WRITE(*, ; (so*s**2)+(31*5)+sz IS THE FORM OF THE DENOMINATOR'
WRITE(* *)'ENTER BO,Bl,B2'
READ( ,*) BO,B1,B2
K = 2.0%F
A= (BZ+(Bl*Kl+(BO*K**21
AZ0 = (A2+(A1*K)+(AO*K*
Azl = ((2. O*AZ)-( o*ao*x /A
AZ2 = (A2-(A1*K)+(AO*K**2)}/A
BZl = {(2.0%B2)-(2.0%(BO*K *2)))/A
BZ2 = BZ-(BI*K)+(BO*K**2))/
OPEN(8,FILE='BILINEAR.DAT' 6 STATUS='NEW')
WRITE(8,101) N,M,NP,SP,DELTH
WRITE(8.102) AZ0
WRITE(8.102) Azl
WRITE(8.102) AZ2
WRITE(8.102) BZ0
WRITE(8.102) BZ1
WRITE(8 102) BZ2
CLOSE (8}
SPAGE
WRITE(*,*) 'H(Z) = ((AZO*Z**2)+(AZ1*Z)+AZ2)/((Z2**2)+(BZ1*Z)+BZ2)"
WRITE(* 101) N,M,NP,SP,DELTH
WRITE(* 103) aZ0
WRITE(* 104) AZ1
WRITE(*.105) AZ2
WRITE(*.106) BZO
WRITE(*.107) BZ1
WRITE(* 108) BZ2
101  FORMAT(21I3,2X,I4,2(4X,F13.10))
102  FORMAT(3X,F13.10}
103  FORMAT(3X.'A20 = ',F13.10
104 FORMAT(3X.'AZl = '.F13.10
105 FORMAT(3X.'AZ2 = ' .F13.10
106  FORMAT(3X,'B20 = ' F13.10
107  FORMAT(3X,'BZl = ' F13.10
108 FORMAT(3X.'BZ2 = '.F13.10
STOP .
END

sl

s

. -’
RTINS PN S R PR AR S A LB “4_3‘.1_‘5.1..

A |




t oF WS

T

VY Y T N

YTy

hs- A A NNy e N o e I e

APPENDIX B
SIMULATION PROGRAM

THIS PROGRAM CALCULATES THE FREQUENCY RESPONSE OF A CONTINUOUS ...
...SYSTEM. THE INPUT IS A RATIO OF TWO POLYNOMIALS OF THE FORM ...

(B(O)*S**M + B(1)*S**(M-1) + ... + B(M=1)*S + B(M)) /

(A(0)*S**N + A(1)*S**(N-1) + ... + A(N-1)*S + A(N))
WHERE THE NUMERATOR COEFFICIENTS B{(0), B(l),...,B(M) AND THE ...
‘e THE DENOMINATOR COEFFICIENTS A(0), aA(i ),«..,A(N) ARE REAL ...
‘e NUMBERS AND THE DEGREE OF THE NUMERATOR POLYNOMIAL, M, AND ...
‘o THE DEGREE OF THE DENOMINATOR POLYNOMIAL, N, ARE POSITIVE cos
oo OMEGAO (THE STARTING VALUE OF OMEGA IN RADIANS e

oo OMEGA IS DEFINED BY S = J*OMEGA DLOMGA (THE
e INCREMENT OF OMEGA), AND NUMPTS (THE NUMBER OF POINTS)

IT IS ASSUMED THAT ALL SYSTEM POLES HAVE NEGATIVE REAL PARTS.

[(slelolelnisinieieininisininisinisInin]e]

INTEGER M,N, NUMPTS
COMPLEX S .DEN,NUM
REAL MH(lOOO) PH(lOOO) OMEGAV(1000),A(128),B(128),IMS,RES, DLOMGA
c CALL TEK618
CALL SHERPAs'IKISEKI 1, 1A, 3)
CALL BLOWUP(0.75
CALL PAGE(9.0 g
CALL HWROT(‘AUTO'
c CALL NOBRDR
CALL HEIGHT(0.15)
CALL MX1ALF('STANDARD','&')
CALL MX2ALF('L/CSTD','#')
CALL MX3ALF('GREEK','%')
CALL MX4ALF('L/CGREEK','@')

NP = O
NPROP = 1
1 R§%D(4 1030) M,N,DLOMGA, OMEGAO ,NUMPTS
WRITE(8,1008
WRITE(8.1110) M
WRITE(8,1111) N
WRITE(8 11127 NUMPTS
WRITE 8,1113§ OMEGAO
WRITE(8.1114) DLOMGA
c IT IS ASSUMED THAT DLOMGA IS READ IN IN RADIANS/SEC
PI=3.141592
MP1=M+1
NP1=N+1
READ(4, 1001; éagrg ,I=1,MP1
READ(4,1001) (A(I) I=1.NP1
WRITE (8,100
WRITE(8,1005) (B(I),I=1,MP1)
WRITE(8.,1006
WRITE(8,1005) (A(I),I=1,NP1)
cI = (1.,0.)

an0n

BEGIN MAIN LOOP

DO 100 L=1,NUMPTS
NUM = CI*B(1)
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DEN = CI*A(1l)

c UPDATE VALUE OF OMEGA
OMEGA = OMEGAQ + §L-1 *DLOMGA
OMEGAV(L) = OMEGA/(2.*PI)

RES = 0.0

IMS = OMEGA
S = CMPLX(RES,IMS)
IF(M.EQ.0) GO TO 60
DO 50 1,M
50 NUM = S*NUM + CI*B(J+1)
60 CONTINUE
IF(N Eg 0) GO TO 80
DO N
70 DEN = S*DEN + CI*A(J+1)
80 CONTINUE
H = NUM/DEN
MH(L) = CABS(H
IF(ABS REALgug GE E-
IF(ABS (IMAG(H E-
IF(IMAG H; .GT. 1. P
TF(IMAG(H) .LT.-1.E- 1 )
GO TO 9
90 PH§L; = ATAN2 IMAG}H) ,REAL
%g PH(L) = PH(L)*180./PI

1
1
H

tﬂw

5
5
(
PH(L

150 WRITE(S, IOOBQOHEGAV(L) HH(L? ,PH(L)

1000 FORMAT(2 X),2(E10.4),13
1001 FORMAT(8(E10.4
1002 FORMAT(///, 8X 'OHEGA' 7X, 'MAGNITUDE(M)',6X, 'PHASE(P)')

1007 FORMAT(8X, ‘RAD/S ,23X, 'DEGREES', /)

1003 FORMAT 3(2X E14.6

1004 FORMAT(2X, 'THE NUMERATOR COEFFICIENTS B(0),B(1),...,B(M) ARE',/)
1005 FORMAT(10(1X,E11.4),//)

1006 E??MAT //,2X, THE DENOMINATOR COEFFICIENTS A(0),A(1), ..A(N) ARE',
1008 FORMAT(20X,' INPUT DATA ',L///)
1009 FORMAT(//////,20X,' OUTPUT DATA ',///)
1010 FORMAT(2(2X,Ei1.4,
1110 FORMAT(2X,'DEGREE OF NUMERATOR = ' I3)
1111 FORMAT(2X, 'DEGREE OF DENOMINATOR = I3)
1112 FORMAT(2X.'NUMBER OF FREQUENCY POINTS = ',143
1113 FORMAT(2X,'STARTING VALUE OF OMEGA = ' El2.6
1114 FORMAT(2X,'INCREMENT OF OMEGA = ',E12.6,/)
g *hkkkkkhkkkkk DISSPLAY AAARkRkkkhhkk
C CALL COMPRS
XMIN = OMEGAQ
c XMAX = OHEGAV(NUHPTS)
XMAX = 5000
XINC = XHAX/ZO
MAGMAX = -0.05
MAGMIN = 0.0

PHMAX = -1.El§
PHMIN = 1.E15

DO 180 I = 1, NUMPTS
IF(MH(1).GT.MAGMAX) MAGMAX = MH(I)
IF PH(I).GT.PHMAX) PHMAX = PH(I)
F(MH(I).LT.MAGMIN) MAGMIN = MH(I)
180 IF(PH(I) LT. PHMI1) PHMIN = PH(I
c GO TO(ZIO,ZZO 220,220) NP
GO T0(210,220,220,220,220,220) ,NP

210 CONTINUE
CALL AREA2D(6.0,3.5)
CALL XNAMEE'FRE UENCY H#2&$', 100)
CALL YNAME('MAGNITUDE $',100)
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CALL HEADIN(' $',100 1.2 42

CALL HEADIN(' R1 = 21.77K 'C2 = 431#P&F R3 = 1. 17M$',100,1.2,4)

CALL HEADIN FREQUENCY RESPONSE MAGNITUDES',100,1.2 4)

CALL CROSS
CALL XNONUM

CALL GRAF(XMIN,'SCALE', XMAX,0.,'SCALE',MAGMAX)
CALL GRAF (XMIN, 'SCALE',XMAX,G. ,0.5,2.5)
X1=MAGMAX/14.

CALL HEIGHT( .2
CALL RLMESS Q& ,100,3.2,0.0)
CALL HEIGHT(0.15) v
CALL RLMESS '-@P &$',100, 27,-X1;
CALL RLMESS '-3@P&/4$' 100, 2.60,-X1
CALL RLMESS('-@P&/25',100,-1. 77,-X1;
CALL RLMESS('-@P&/43',100,-0.98,-X1
CALL RLMESS('0$',100,-0.037,-X1}
CALL RLMESS('@P&/4$',100, 0.68 -X1
CALL RLMESS('@P&/2$',100, 47 X1
CALL RLMESS('3@P&/4$', 100 .22,-X1)
CALL RLMESS '@P&S' 100,3.10, -x1)
CALL MARKER(1S)

220 é:l{\g.l. CURVE(OMEGAV ;‘l;'! ,NUMPTS,0)

CALL HEADIN;' $',100,1.2,4

L AREA2D(6.0
CALL XNAME?'FREQUENCY H#Z&S' ,100)
CALL YNAME('P#HASE&S',100)
CALL HEADIN(' S' 1 2,4
CALL HEADIN(' 100 1.2,4
CALL HEADIN(' LOSSLESS INTEGRATOR §', 100,1 2,4)
CALL HEADIN('R1l = 21.77K C2 = 4314P&F R3 1.17Ms',100, 1.2,4)
CALL HEADIN(' GIC AP (8 = 1.66) 100 1.2,4)
CALL HEADIN(' FREQUENCY RESPONSE PHASE é' 100,1.2,4)

CALL CROSS
CALL GRAF (XMIN,XINC XMAX PHMIN, 'SCALE', PHMAX)
CALL GRAF(XMIN, 'SCALE', <MAX,PHMIN, 'SCALE',PHMAX)
X2=(PHMAX- PHHIN /16.
CALL HEIGHT(O.
CALL RLMESS '%?&s' ,100,3.2,0.0)
CALL HEIGHT(O
CALL RLMESS{'-@P &$',100,-3.27,-X2
CALL RLMESS '-3@p&/4s',1oo,-z.so,-xz
CALL RLMESS('-@P&/25',100, -1 77, -ng
CALL RLMESS('-@P&/4$',100.-0.98 -X2
CALL RLMESS('0$',100,-0. oév -X2
CALL RLMESS('@P&/4S'.100,0.68, -xz;
CALL RLMESS('@P&/2S'.100.1. 47 -X2
CALL RLMESS '3@9&/45' 1002 -X2)
CALL RLMESS({'@P&S$',100,3.10, -xé)
CALL CURVE (OMEGAV, PH NUMPTS 0)
CALL RESET 'cnoss')
CALL ENDPL(0
IF(NP.LT. Npaopg GOTO
CALL LINES('1 1xﬂaz&s' IPAK, 1
CALL LINES('1.93KH#2&S'. IPAK. 2
CALL LINES('2.87KH#Z&S' . IPAK.3
CALL LINES('3.17KH#Z&S$' IPAK. 4
XW = XLEGND(IPAK,4
YW = YLEGND xpax 3

YL = 2 3- 5 YW-.I

CALL BLNKI(XL-.1,6.2-.S,YL-.1,2.3-.5,2)
CALL DOT

CALL GRID(1,1)

CALL RESET§'DOT‘2

CALL RESET('BLNK1'

CALL LEGENDéIPAK,4,XL,YL)

CALL ENDPL(

CALL DONEPL

NOOOOOOONOONNNONANNNANNNNAONNNN O0AONNONOONON 0N 0O
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* INSTRUCTIONS FOR USE OF PROGRAM *
Fe e e e g e e e e Tk ek Kk ek Rk Rk Rk ARk Rk kA kA kK

THE USER'S INPUT DATA IS TO BE LOCATED IN A FILE WHOSE FILENAME FILE-
TYPE AND FILEMODE ARE FILE FT04F001 Al , THE OUTPUT DATA WILL BE
STORED IN THE FILE FILE FTO8F001 Al.

$s $g$$S$$$$$$SSS$$$$$$SSSSS$$SSSSSSSSSSS$$$$$$$S$$$$$$$$$$$$$$$$$

PILE, LOAD AND EXECUTE THE PROGRAM ONCE THE INPUT DATA FILE
S BEEN CREATED, Rgng <FROM FLIST>
gggéRgﬁVOKES THE FORTRAN VS COMPILER, LOADS AND EXECUTES THE
$9855555555855558555555558558555555955595855555556555555565556855583

THE INPUT DATA REQUIRED ARE (NOTE:REAL NUMBERS WITH DECIMAL POINTS.
MUST BE IN THE FORMAT X.Y, EVEN IF X,0R Y, OR BOTH ARE ZERO)

$$883
$ TO
$ HA
$
$

r

- = = =™

NAME TYPE RANGE (IF ARRAY) RESTRICTIONS (IF ANY)
M INTEGER 0 <= M <= 128
N INTEGER 0 <= N <= 128

OMEGAO REAL
DLOMGA REAL

NUMPTS REAL 1 <= NUMPTS <= 1000
BSL; REAL 0,1, ...,M 0 <= M <= 128

A(L REAL 0,1, ...,N 0 <= N <= 128

WHERE ...

M = DEGREE OF NUMERATOR POLYNOMIAL

N = DEGREE OF DENOMINATOR POLYNOMIAL

OMEGAO = STARTING VALUE OF OMEGA (AS IN S = J*OMEGA)) IN RAD/S
DLOMGA = INCREMENT OF OMEGA IN RADIANS

B(L) = COEFF%%&%N;S IN NUMERATOR POLYNOMIAL (IN ORDER B(0),B(1),

COEFF%S%E?TS IN DENOMINATOR POLYNOMIAL (IN ORDER A(O),A(1l),

e e,

a(L)

THE FOLLOWING INPUT DATA SET PROVIDES THE FREQUENCY RESPONSE FOR THE
SYSTEM CHARACTERIZED BY

H(S) = 10S/(S+1)(S+5)/0MEGA
FOR OMEGA = 0 TO OMEGA = 4.0 IN STEPS OF OMEGA = 0.2

001 002 0.2 0.0 021
10. 0.0 0.0
1.0 6.0 5.0
INPUT DATA
DEGREE OF NUMERATOR = 1

DEGREE OF DENOMINATOR = 2

NUMBER OF FREQUENCY POINTS = 21
STARTING VALUE OF OMEGA = 0.000000E+00
INCREMENT OF OMEGA = 0.200000E+00

THE NUMERATOR COEFFICIENTS B(0),B(l),...,B(M) ARE
0.1000E+02 0.0000E+00

[s1elzlzinlsinisinizinisisieininieininisininisininininisininieieisiniciesininisininsiesinininininininininisicisininininisininininisisinininlp]
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THE DENOMINATOR COEFFICIENTS A(O),A(1l),...A(N) ARE
0.1000E+01 0.6000E+01

OUTPUT DATA

0.5000E+01

OMEGA MAGNITUDE (M) PHASE(P)
RAD/S DEGREES
0.000000E+00 0.000000E+00 0.000000E+0Q0
0.200000E+00 0.391919E+00 0.763994E+02
0.400000E+00 0.740416E+00 0.636246E+02
0.600000E+00 0.102166E+01 0.521935E+02
0.800000E+00 0.123370E+01 0.422499E+02
0.100000E+01 0.138675E+01 0.336901E+02
0.120000E+01 0.149402E+01 0.263098E+02
0.140000E+01 0.156719E+01 0.198954E+02
0.160000E+01 0.161531E+01 0.142607E+02
0.180000E+01 0.164497E+01 0.925574E+01
0.200000E+01 0.166091E+01 0.476366E+01
0.220000E+01 0.166654E+01 0.694467E+00
0.240000E+01 0.166435E+01  ~-0.302113E+01
0.260000E+01 0.165616E+01  -0.643690E+01
0.280000E+01 0.164335E+01  -0.959499E+01
0.300000E+01 0.162698E+01  -0.125288E+02
0.320000E+01 0.160786E+01  -0.152652E+02
0.340000E+01 0.158665E+01  -0.178262E+02
0.360000E+01 0.156386E+01  -0.202298E+02
0.380000E+01 0.153990E+01  -0.224913E+02
0.400000E+01 0.151511E+01  -0.246236E+02

STOP
END
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